A Generalization of the Poincaré-Cartan Integral Invariant for a Nonlinear Nonholonomic Dynamical System

نویسندگان

  • Naseer Ahmed
  • Muhammad Usman
چکیده

Based on the d’Alembert-Lagrange-Poincaré variational principle, we formulate general equations of motion for mechanical systems subject to nonlinear nonholonomic constraints, that do not involve Lagrangian undetermined multipliers. We write these equations in a canonical form called the Poincaré-Hamilton equations, and study a version of corresponding Poincaré-Cartan integral invariant which are derived by means of a type of asynchronous variation of the Poincaré variables of the problem that involve the variation of the time. As a consequence, it is shown that the invariance of a certain line integral under the motion of a mechanical system of the type considered characterizes the Poincaré-Hamilton equations as underlying equations of the motion. As a special case, an invariant analogous to Poincaré linear integral invariant is obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Second Kind Volterra-Fredholm Integral Equations by Using Triangular Functions (TF) and Dynamical Systems

The method of triangular functions (TF) could be a generalization form of the functions of block-pulse (Bp)‎. ‎The solution of second kind integral equations by using the concept of TF would lead to a nonlinear equations system‎. ‎In this article‎, ‎the obtained nonlinear system has been solved as a dynamical system‎. ‎The solution of the obtained nonlinear system by the dynamical system throug...

متن کامل

Robust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot

Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...

متن کامل

A Generalization of the Meir-Keeler Condensing Operators and its Application to Solvability of a System of Nonlinear Functional Integral Equations of Volterra Type

In this paper, we generalize the Meir-Keeler condensing  operators  via a concept of the class of operators  $ O (f;.)$, that was given by Altun and Turkoglu [4], and apply this extension to obtain some tripled fixed point theorems.  As an application of this extension, we  analyze the existence of solution for a system of nonlinear functional integral equations of Volterra type. Finally,  we p...

متن کامل

The Exact Solution of Min-Time Optimal Control Problem in Constrained LTI Systems: A State Transition Matrix Approach

In this paper, the min-time optimal control problem is mainly investigated in the linear time invariant (LTI) continuous-time control system with a constrained input. A high order dynamical LTI system is firstly considered for this purpose. Then the Pontryagin principle and some necessary optimality conditions have been simultaneously used to solve the optimal control problem. These optimality ...

متن کامل

Solving infinite system of nonlinear integral equations by using ‎F-‎generalized Meir-Keeler condensing operators, measure of noncompactness and modified homotopy perturbation.

In this article to prove existence of solution of infinite system of nonlinear integral equations, we consider the space of solution containing all convergence sequences with a finite limit, as with a suitable norm is a Banach space. By creating a generalization of Meir-Keeler condensing operators which is named as F-generalized Meir-Keeler condensing operators and measure of noncompactness, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008